Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genom Data ; 24(1): 78, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097945

RESUMO

OBJECTIVES: Castanopsis is the third largest genus in the Fagaceae family and is essentially tropical or subtropical in origin. The species in this genus are mainly canopy-dominant trees, and the key components of evergreen broadleaved forests play a crucial role in the maintenance of local biodiversity. Castanopsis chinensis, distributed from South China to Vietnam, is a representative species. It currently suffers from a high disturbance of human activity and climate change. Here, we present its assembled genome to facilitate its preliminary conservation and breeding on the genome level. DATA DESCRIPTION: The C. chinensis genome was assembled and annotated by Nanopore and MGI whole-genome sequencing and RNA-seq reads using leaf tissues. The assembly was 888,699,661 bp in length, consisting of 133 contigs and a contig N50 of 23,395,510 bp. A completeness assessment of the assembly with Benchmarking Universal Single-Copy Orthologs (BUSCO) indicated a score of 98.3%. Repetitive elements comprised 471,006,885 bp, accounting for 55.9% of the assembled sequences. A total of 51,406 genes that coded for 54,310 proteins were predicted. Multiple databases were used to functionally annotate the protein sequences.


Assuntos
Fagaceae , Melhoramento Vegetal , Humanos , Florestas , Genoma , Biodiversidade , Fagaceae/genética
2.
BMC Genom Data ; 24(1): 73, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017381

RESUMO

OBJECTIVES: Erythrophleum is a genus in the Fabaceae family. The genus contains only about 10 species, and it is best known for its hardwood and medical properties worldwide. Erythrophleum fordii Oliv. is the only species of this genus distributed in China. It has superior wood and can be used in folk medicine, which leads to its overexploitation in the wild. For its effective conservation and elucidation of the distinctive genetic traits of wood formation and medical components, we present its first genome assembly. DATA DESCRIPTION: This work generated ~ 160.8 Gb raw Nanopore whole genome sequencing (WGS) long reads, ~ 126.0 Gb raw MGI WGS short reads and ~ 29.0 Gb raw RNA-seq reads using E. fordii leaf tissues. The de novo assembly contained 864,825,911 bp in the E. fordii genome, with 59 contigs and a contig N50 of 30,830,834 bp. Benchmarking Universal Single-Copy Orthologs (BUSCO) revealed 98.7% completeness of the assembly. The assembly contained 471,006,885 bp (54.4%) repetitive sequences and 28,761 genes that coded for 33,803 proteins. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.


Assuntos
Fabaceae , Árvores , Anotação de Sequência Molecular , Genoma , China
3.
Sci Data ; 10(1): 819, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993453

RESUMO

The application of DNA barcoding has been significantly limited by the scarcity of reliable specimens and inadequate coverage and replication across all species. The deficiency of DNA barcode reference coverage is particularly striking for highly biodiverse subtropical and tropical regions. In this study, we present a comprehensive barcode library for woody plants in tropical and subtropical China. Our dataset includes a standard barcode library comprising the four most widely used barcodes (rbcL, matK, ITS, and ITS2) for 2,520 species from 4,654 samples across 49 orders, 144 families, and 693 genera, along with 79 samples identified at the genus level. This dataset also provides a super-barcode library consisting of 1,239 samples from 1,139 species, 411 genera, 113 families, and 40 orders. This newly developed library will serve as a valuable resource for DNA barcoding research in tropical and subtropical China and bordering countries, enable more accurate species identification, and contribute to the conservation and management of tropical and subtropical forests.


Assuntos
Código de Barras de DNA Taxonômico , Plantas , China , Florestas , Filogenia , Plantas/genética , Madeira
4.
New Phytol ; 240(4): 1534-1547, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37649282

RESUMO

Predicting and managing the structure and function of plant microbiomes requires quantitative understanding of community assembly and predictive models of spatial distributions at broad geographic scales. Here, we quantified the relative contribution of abiotic and biotic factors to the assembly of phyllosphere bacterial communities, and developed spatial distribution models for keystone bacterial taxa along a latitudinal gradient, by analyzing 16S rRNA gene sequences from 1453 leaf samples taken from 329 plant species in China. We demonstrated a latitudinal gradient in phyllosphere bacterial diversity and community composition, which was mostly explained by climate and host plant factors. We found that host-related factors were increasingly important in explaining bacterial assembly at higher latitudes while nonhost factors including abiotic environments, spatial proximity and plant neighbors were more important at lower latitudes. We further showed that local plant-bacteria associations were interconnected by hub bacteria taxa to form metacommunity-level networks, and the spatial distribution of these hub taxa was controlled by hosts and spatial factors with varying importance across latitudes. For the first time, we documented a latitude-dependent importance in the driving factors of phyllosphere bacteria assembly and distribution, serving as a baseline for predicting future changes in plant phyllosphere microbiomes under global change and human activities.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Plantas/genética , Folhas de Planta/microbiologia
5.
Mol Ecol Resour ; 22(1): 319-333, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34233085

RESUMO

Phylogenetic trees have been extensively used in community ecology. However, how the phylogeny construction affects ecological inferences is poorly understood. In this study, we constructed three different types of phylogenetic trees (a synthetic-tree generated using V.PhyloMaker, a barcode-tree generated using rbcL+matK+trnH-psbA, and a plastome-tree generated from plastid genomes) that represented an increasing level of phylogenetic resolution among 580 woody plant species from six forest dynamic plots in subtropical evergreen broadleaved forests of China. We then evaluated the performance of each phylogeny in estimations of community phylogenetic structure, turnover and phylogenetic signal in functional traits. As expected, the plastome-tree was most resolved and most supported for relationships among species. For local phylogenetic structure, the three trees showed consistent results with Faith's PD and MPD; however, only the synthetic-tree produced significant clustering patterns using MNTD for some plots. For phylogenetic turnover, contrasting results between the molecular trees and the synthetic-tree occurred only with nearest neighbor distance. The barcode-tree agreed more with the plastome-tree than the synthetic-tree for both phylogenetic structure and turnover. For functional traits, both the barcode-tree and plastome-tree detected phylogenetic signal in maximum height, but only the plastome-tree detected signal in leaf width. This is the first study that uses plastid genomes in large-scale community phylogenetics. Our results highlight the improvement of plastome-trees over barcode-trees and synthetic-trees for the analyses studied here. Our results also point to the possibility of type I and II errors in estimation of phylogenetic structure and turnover and detection of phylogenetic signal when using synthetic-trees.


Assuntos
Florestas , China , Filogenia
6.
Mitochondrial DNA B Resour ; 5(3): 2636-2637, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33457888

RESUMO

Ormosia formosana is an important hardwood species and its seeds are popular as decorative jewelry. Currently, this species is threatened in the natural forests due to habitat destruction. Here, we first report the chloroplast genome of O. formosana for future studies in ecology, phylogeny, and conservation. The chloroplast genome of O. formosana is 173,587 bp in length with a GC content of 35.80%. It includes a large single-copy region of 73,550 bp, a small single-copy region of 18,683 bp, and two inverted repeat regions of 40,696 bp and 40,658 bp, respectively. The genome was totally annotated with 135 genes, including 90 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. Phylogenetic analysis indicated that O. formosana is most genetically similar to O. boluoensis.

7.
PLoS One ; 9(11): e111500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25365507

RESUMO

Spatial distribution pattern of biological related species present unique opportunities and challenges to explain species coexistence. In this study, we explored the spatial distributions and associations among congeneric species at both the species and genus levels to explain their coexistence through examining the similarities and differences at these two levels. We first used DNA and cluster analysis to confirmed the relative relationship of eight species within a 20 ha subtropical forest in southern China. We compared Diameter at breast height (DBH) classes, aggregation intensities and spatial patterns, associations, and distributions of four closely related species pairs to reveal similarities and differences at the species and genus levels. These comparisons provided insight into the mechanisms of coexistence of these congeners. O-ring statistics were used to measure spatial patterns of species. Ω0-10, the mean conspecific density within 10 m of a tree, was used as a measure of the intensity of aggregation of a species, and g-function was used to analyze spatial associations. Our results suggested that spatial aggregations were common, but the differences between spatial patterns were reduced at the genus level. Aggregation intensity clearly reduced at the genus level. Negative association frequencies decreased at the genus level, such that independent association was commonplace among all four genera. Relationships between more closely related species appeared to be more competitive at both the species and genus levels. The importance of competition on interactions is most likely influenced by similarity in lifestyle, and the habitat diversity within the species' distribution areas. Relatives with different lifestyles likely produce different distribution patterns through different interaction process. In order to fully understand the mechanisms generating spatial distributions of coexisting siblings, further research is required to determine the spatial patterns and associations at other classification levels.


Assuntos
Lauraceae/classificação , Lauraceae/genética , Análise Espacial , Biodiversidade , China , Filogenia , Especificidade da Espécie
8.
PLoS One ; 9(4): e95703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748022

RESUMO

BACKGROUND: Ecologists have been monitoring community dynamics with the purpose of understanding the rates and causes of community change. However, there is a lack of monitoring of community dynamics from the perspective of phylogeny. METHODS/PRINCIPLE FINDINGS: We attempted to understand temporal phylogenetic turnover in a 50 ha tropical forest (Barro Colorado Island, BCI) and a 20 ha subtropical forest (Dinghushan in southern China, DHS). To obtain temporal phylogenetic turnover under random conditions, two null models were used. The first shuffled names of species that are widely used in community phylogenetic analyses. The second simulated demographic processes with careful consideration on the variation in dispersal ability among species and the variations in mortality both among species and among size classes. With the two models, we tested the relationships between temporal phylogenetic turnover and phylogenetic similarity at different spatial scales in the two forests. Results were more consistent with previous findings using the second null model suggesting that the second null model is more appropriate for our purposes. With the second null model, a significantly positive relationship was detected between phylogenetic turnover and phylogenetic similarity in BCI at a 10 m×10 m scale, potentially indicating phylogenetic density dependence. This relationship in DHS was significantly negative at three of five spatial scales. This could indicate abiotic filtering processes for community assembly. Using variation partitioning, we found phylogenetic similarity contributed to variation in temporal phylogenetic turnover in the DHS plot but not in BCI plot. CONCLUSIONS/SIGNIFICANCE: The mechanisms for community assembly in BCI and DHS vary from phylogenetic perspective. Only the second null model detected this difference indicating the importance of choosing a proper null model.


Assuntos
Ecossistema , Florestas , Modelos Teóricos , Clima Tropical , Algoritmos , Característica Quantitativa Herdável
9.
PLoS One ; 9(4): e95890, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755956

RESUMO

The species-area relationship is one of the most important topic in the study of species diversity, conservation biology and landscape ecology. The species-area relationship curves describe the increase of species number with increasing area, and have been modeled by various equations. In this paper, we used detailed data from six 1-ha subtropical forest communities to fit three species-area relationship models. The coefficient of determination and F ratio of ANOVA showed all the three models fitted well to the species-area relationship data in the subtropical communities, with the logarithm model performing better than the other two models. We also used the three species-abundance distributions, namely the lognormal, logcauchy and logseries model, to fit them to the species-abundance data of six communities. In this case, the logcauchy model had the better fit based on the coefficient of determination. Our research reveals that the rare species always exist in the six communities, corroborating the neutral theory of Hubbell. Furthermore, we explained why all species-abundance figures appeared to be left-side truncated. This was due to subtropical forests have high diversity, and their large species number includes many rare species.


Assuntos
Biodiversidade , Florestas , Modelos Biológicos , Algoritmos , Análise de Variância , China , Clima , Modelos Estatísticos , Dispersão Vegetal , Árvores
10.
PLoS One ; 6(6): e21273, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701680

RESUMO

Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats) and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.


Assuntos
Ecossistema , Filogenia , Árvores/classificação , Árvores/genética , Clima Tropical , China , Código de Barras de DNA Taxonômico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...